Extensions 1→N→G→Q→1 with N=C32 and Q=C3×C6

Direct product G=N×Q with N=C32 and Q=C3×C6
dρLabelID
C33×C6162C3^3xC6162,55

Semidirect products G=N:Q with N=C32 and Q=C3×C6
extensionφ:Q→Aut NdρLabelID
C32⋊(C3×C6) = C3×C32⋊C6φ: C3×C6/C3C6 ⊆ Aut C32186C3^2:(C3xC6)162,34
C322(C3×C6) = C6×He3φ: C3×C6/C6C3 ⊆ Aut C3254C3^2:2(C3xC6)162,48
C323(C3×C6) = S3×C33φ: C3×C6/C32C2 ⊆ Aut C3254C3^2:3(C3xC6)162,51
C324(C3×C6) = C32×C3⋊S3φ: C3×C6/C32C2 ⊆ Aut C3218C3^2:4(C3xC6)162,52

Non-split extensions G=N.Q with N=C32 and Q=C3×C6
extensionφ:Q→Aut NdρLabelID
C32.1(C3×C6) = C2×C3≀C3φ: C3×C6/C6C3 ⊆ Aut C32183C3^2.1(C3xC6)162,28
C32.2(C3×C6) = C2×He3.C3φ: C3×C6/C6C3 ⊆ Aut C32543C3^2.2(C3xC6)162,29
C32.3(C3×C6) = C2×He3⋊C3φ: C3×C6/C6C3 ⊆ Aut C32543C3^2.3(C3xC6)162,30
C32.4(C3×C6) = C2×C3.He3φ: C3×C6/C6C3 ⊆ Aut C32543C3^2.4(C3xC6)162,31
C32.5(C3×C6) = C2×C9○He3φ: C3×C6/C6C3 ⊆ Aut C32543C3^2.5(C3xC6)162,50
C32.6(C3×C6) = S3×C3×C9φ: C3×C6/C32C2 ⊆ Aut C3254C3^2.6(C3xC6)162,33
C32.7(C3×C6) = S3×He3φ: C3×C6/C32C2 ⊆ Aut C32186C3^2.7(C3xC6)162,35
C32.8(C3×C6) = S3×3- 1+2φ: C3×C6/C32C2 ⊆ Aut C32186C3^2.8(C3xC6)162,37
C32.9(C3×C6) = C2×C32⋊C9central extension (φ=1)54C3^2.9(C3xC6)162,24
C32.10(C3×C6) = C2×C9⋊C9central extension (φ=1)162C3^2.10(C3xC6)162,25
C32.11(C3×C6) = C6×3- 1+2central extension (φ=1)54C3^2.11(C3xC6)162,49

׿
×
𝔽